Нефть и песок О стали Компрессор - подбор и ошибки Из истории стандартизации резьб Соперник ксерокса - гектограф Новые технологии производства стали Экспорт проволоки из России Прогрессивная технологическая оснастка Цитадель сварки с полувековой историей Упрочнение пружин Способы обогрева Назначение, структура, характеристики анализаторов Промышленные пылесосы Штампованные гайки из пружинной стали Консервация САУ Стандарты и качество Технология производства Водород Выбор материала для крепежных деталей Токарный резец в миниатюре Производство проволоки Адгезия резины к металлокорду Электролитическое фосфатирование проволоки Восстановление корпусных деталей двигателей Новая бескислотная технология производства проката Синие кристаллы Автоклав Нормирование шумов связи Газосварочный аппарат для тугоплавких припоев
Главная --> Промиздат -->  Абразионные материалы 

1 2 3 4 5 ( 6 ) 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143

2-цилиндровые маломощные, до 25-35 IP, моторы употребляются только на авиэтках. Расположение цилиндров бывает


Фиг. 6. Двигатель Блекборн с Л-образньш расположением цилиндров.

или V-образное, под углом близким к 90°, или же противоположное друг относительно друга (фиг. 6 и 7).

Моторы 1-рядныв употребляются с числом цилиндров 4 и 6. Коленчатый

вал 4-цилиндрового мотора имеет кривошипы, лежащие в одной плоскости и поочередно направленные то в одну, то в другую сторону от оси вала. При этом по отношению к средине мотора правые и левые кри-. вошипы располагаются симметрично. Вспышки в цилиндрах чередуются через % оборота вала, перебрасываясь с одного на другой в порядке 1-2-4-3 или 1-3-4-2. 4-цилиндровые 1-рядные моторы дают б. или м. удовлетворительное уравновешивание. Кривошипы вала 1-рядного 6-цилиндрового мотора направлены под углом 120°



Фиг. 7. Двигатель Бристоль СЬегиЬ III 30 ff.

Фиг. 8. Схема вала 4-цилиндрового двигателя.

друг к другу и располагаются симметрично в обе стороны от средины вала. Работа цилиндров равномерно чередуется через каждые Va оборота вала, в порядке №№ 1-5-3-6-2-4. В 1-рядных 6-цилиндровых моторах получается полное уравновешивание и центробежных сил и сил инерции поршней и шатунов, почему такая схема расположения является одной из наиболее употребительных для авиационных моторов средних мощностей (от 180 до 400 ЕР),

2-рядныв, или V-образные, моторы употребляются в двух схемах: а) по 4 цилиндра в ряд и б) по 6 цилиндров в ряд. В первой схеме угол между рядами цилиндров берется в 90°, и тогда вспышки в цилиндрах чередуются также через 90° оборота вала. Коленчатый вал выполняется плоским, и он совершенно подобен валу 1 - рядного 4-цилиндрового двигателя. В схеме расположения коленчатого вала, указанной на фиг. 8, колена последовательно повернуты друг относит, друга на 90°. В схеме 12-цилиндрового V-образного мотора угол меясду рядами цилиндров в большинстве берется в 60° (фиг, 9), и тогда вспышки равномерно чередуются через 60°. В некоторых случаях, для уменьшения лобовой площади мотора, угол между рядами берут меньше (фиг, 10, Либерти-45°), и тогда вспышки чередуются неравномерно. Вал 2-рядного 12-цилиндрового мотора имеет ту же форму, что и вал 1-рядн, 6-цилиндрового.




Фиг. 9. 12-цилиндровый двигатель Райт 600 №.

Трехрядные моторы употребляются в двух схемах: а) по 4 цхииндра в ряд и б) по 6 цилиндров в ряд. В первом случае, 12-цилиндрового W-образного мотора (фиг. 11, ст. 55-56), угол между рядами берется в 60° и вспышки чередуются также через 60°. Вал - плоский, как в 2-рядном 8-ЦИЛИР1ДР0В0М моторе. Во второй же схеме, 18-цилиндрового W-образного мотора, угол берется в 40°, вал выполняется как и в 1-рядном 6-цилиндровом моторе, вспышки чередуются через 40°.

М н о г о р я д н ы е моторы мало употребительны. На фиг. 12 представлен исполненный 4-рядный двигатель на 16 цилиндров. Углы между рядами цилиндров следующие: между верхними 45°, между боковыми с одной и другой стороны по 90°, между нижними 135°. Вспышки чередуются равномерно через 45°.

Звездообразные моторы выполняются с одной (фиг. 13) и двумя (фиг. 14) звездочками. В каждой звездочке бывает нечетное число цилиндров, от 3 до 9, вспышки чередуются все время равномерно, через один цилиндр.

Охлаждение. Для авиационных моторов применяется охлаждение водяное и воздушное. Водяное дает совершенное охла-лэдепие, равномерное для всех цилиндров при любом расположении их, но требует большого ухода, особенно зимой, служит лишней причиной неисправностей и увеличивает вес установки. Воздушное охлаждение в эксплоатации проще водяного и обладает меньшим количеством поражаемых мест в воздушном бою. Удовлетворительные результаты применения воздушно- i

го охлаждения получены лишь по отношению к звездообразному распололхеиию цилиндров. Такие моторы строятся сейчас мощностью до 500 IP. Моторы V-образные и 1-рядные строятся лишь на небольшие


Фиг. 10. Поперечный разрез авиационного двигателя ЛиОерты 4 00 IP.




Фиг. 11. Поперечный разрез двигателя Неппр Lion 450 IP.

МОЩНОСТИ (до 120 IP), а для больших мощностей вопрос находится в стадии эксперимента. Ыа этих моторах для повышения циркуляции воздуха между цилиндрами устанавливается сзади мотора вентилятор.


Фиг. 12. Двигатель Непир <Cub> 1 000 IP.

Количество тепла, к-рое приходится отводить от стенок цилиндра для обоих видов охлаждения, воздушного и водяного, колеблется в пределах от 400 до 630 Са1/1Р/ч. Для отвода тепла от цилиндра при воздушном охлаждении приходится покрывать

цилиндры ребрами, по расчету от 260 до 330 см поверхности ребер на каждую IP при скорости полета 100 км/ч. В цилиндрах моторов с водяным охлаждением для отвода тепла никаких добавочных приспособлений устанавливать не требуется.

Конструкция деталей. Цилиндры А. д. выполняются или полностью из стали, или же они являются смешанной конструкцией, с применением алюминиевых отливок. Внутренняя букса цилиндра, по которой движется поршень, выполняется всегда из стали, а головки, рубашки и наружные части делаются из алюминиевых сплавов. Толщина стенок цилиндра А. д. берется начиная от 2 мм. и выше, но она редко превышает 4 мм, даже в верхнем поясе, охватывающем камеру сгорания. Толщина донышка стального цилиндра при сферической форме его и при диам. цилиндра в 127 мм спускается до 4,75 мм (Либерти). Чугун идет только для мелких трущихся втулок. Примеры применения материалов, употреб. для цилиндров А. д., приведены в таблице на ст. 57. Форма головки цилиндра имеет большое значение для работы мотора. Чем меньше поверхность головки, тем экономичнее работа мотора и больше его мощность; слишком вытянутая камера способствует возникновению детонационного сгорания топлива, опасного для прочности мотора. С целью уменьшения протяжения камеры и сокращения ее поверхности в цилиндрах А. д. применяются лишь подвесные клапаны, опирающиеся внутри цилиндра



1 2 3 4 5 ( 6 ) 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143